-
Notifications
You must be signed in to change notification settings - Fork 246
/
Copy pathanalyze_results.py
202 lines (170 loc) · 6.91 KB
/
analyze_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import os.path as osp
import mmcv
import numpy as np
from mmcv import Config, DictAction
from mmdet.core.evaluation import eval_map
from mmdet.core.visualization import imshow_gt_det_bboxes
from mmdet.datasets import build_dataset, get_loading_pipeline
def bbox_map_eval(det_result, annotation):
"""Evaluate mAP of single image det result.
Args:
det_result (list[list]): [[cls1_det, cls2_det, ...], ...].
The outer list indicates images, and the inner list indicates
per-class detected bboxes.
annotation (dict): Ground truth annotations where keys of
annotations are:
- bboxes: numpy array of shape (n, 4)
- labels: numpy array of shape (n, )
- bboxes_ignore (optional): numpy array of shape (k, 4)
- labels_ignore (optional): numpy array of shape (k, )
Returns:
float: mAP
"""
# use only bbox det result
if isinstance(det_result, tuple):
bbox_det_result = [det_result[0]]
else:
bbox_det_result = [det_result]
# mAP
iou_thrs = np.linspace(
.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True)
mean_aps = []
for thr in iou_thrs:
mean_ap, _ = eval_map(
bbox_det_result, [annotation], iou_thr=thr, logger='silent')
mean_aps.append(mean_ap)
return sum(mean_aps) / len(mean_aps)
class ResultVisualizer:
"""Display and save evaluation results.
Args:
show (bool): Whether to show the image. Default: True
wait_time (float): Value of waitKey param. Default: 0.
score_thr (float): Minimum score of bboxes to be shown.
Default: 0
"""
def __init__(self, show=False, wait_time=0, score_thr=0):
self.show = show
self.wait_time = wait_time
self.score_thr = score_thr
def _save_image_gts_results(self, dataset, results, mAPs, out_dir=None):
mmcv.mkdir_or_exist(out_dir)
for mAP_info in mAPs:
index, mAP = mAP_info
data_info = dataset.prepare_train_img(index)
# calc save file path
filename = data_info['filename']
if data_info['img_prefix'] is not None:
filename = osp.join(data_info['img_prefix'], filename)
else:
filename = data_info['filename']
fname, name = osp.splitext(osp.basename(filename))
save_filename = fname + '_' + str(round(mAP, 3)) + name
out_file = osp.join(out_dir, save_filename)
imshow_gt_det_bboxes(
data_info['img'],
data_info,
results[index],
dataset.CLASSES,
show=self.show,
score_thr=self.score_thr,
wait_time=self.wait_time,
out_file=out_file)
def evaluate_and_show(self,
dataset,
results,
topk=20,
show_dir='work_dir',
eval_fn=None):
"""Evaluate and show results.
Args:
dataset (Dataset): A PyTorch dataset.
results (list): Det results from test results pkl file
topk (int): Number of the highest topk and
lowest topk after evaluation index sorting. Default: 20
show_dir (str, optional): The filename to write the image.
Default: 'work_dir'
eval_fn (callable, optional): Eval function, Default: None
"""
assert topk > 0
if (topk * 2) > len(dataset):
topk = len(dataset) // 2
if eval_fn is None:
eval_fn = bbox_map_eval
else:
assert callable(eval_fn)
prog_bar = mmcv.ProgressBar(len(results))
_mAPs = {}
for i, (result,) in enumerate(zip(results)):
# self.dataset[i] should not call directly
# because there is a risk of mismatch
data_info = dataset.prepare_train_img(i)
mAP = eval_fn(result, data_info['ann_info'])
_mAPs[i] = mAP
prog_bar.update()
# descending select topk image
_mAPs = list(sorted(_mAPs.items(), key=lambda kv: kv[1]))
good_mAPs = _mAPs[-topk:]
bad_mAPs = _mAPs[:topk]
good_dir = osp.abspath(osp.join(show_dir, 'good'))
bad_dir = osp.abspath(osp.join(show_dir, 'bad'))
self._save_image_gts_results(dataset, results, good_mAPs, good_dir)
self._save_image_gts_results(dataset, results, bad_mAPs, bad_dir)
def parse_args():
parser = argparse.ArgumentParser(
description='MMDet eval image prediction result for each')
parser.add_argument('config', help='test config file path')
parser.add_argument(
'prediction_path', help='prediction path where test pkl result')
parser.add_argument(
'show_dir', help='directory where painted images will be saved')
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument(
'--wait-time',
type=float,
default=0,
help='the interval of show (s), 0 is block')
parser.add_argument(
'--topk',
default=20,
type=int,
help='saved Number of the highest topk '
'and lowest topk after index sorting')
parser.add_argument(
'--show-score-thr',
type=float,
default=0,
help='score threshold (default: 0.)')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def main():
args = parse_args()
mmcv.check_file_exist(args.prediction_path)
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
cfg.data.test.test_mode = True
# import modules from string list.
if cfg.get('custom_imports', None):
from mmcv.utils import import_modules_from_strings
import_modules_from_strings(**cfg['custom_imports'])
cfg.data.test.pop('samples_per_gpu', 0)
cfg.data.test.pipeline = get_loading_pipeline(cfg.data.train.pipeline)
dataset = build_dataset(cfg.data.test)
outputs = mmcv.load(args.prediction_path)
result_visualizer = ResultVisualizer(args.show, args.wait_time,
args.show_score_thr)
result_visualizer.evaluate_and_show(
dataset, outputs, topk=args.topk, show_dir=args.show_dir)
if __name__ == '__main__':
main()