Skip to content

Latest commit

 

History

History
53 lines (36 loc) · 1.93 KB

README.md

File metadata and controls

53 lines (36 loc) · 1.93 KB

Mirex 2019 Audio Classification (Train/Test) Tasks

Tasks

Task No of samples No of Classes
Audio Classical Composer Identification 2772 11
Audio US Pop Music Genre Classification 7000 10
Audio Latin Music Genre Classification 3227 10
Audio Music Mood Classification 600 5
Audio K-POP Mood Classification 1438 5
Audio K-POP Genre Classification 1894 7

Requirements

  • Python >= 3.6
  • Python packages:
    • librosa, numpy, pandas, joblib, tqdm, sklearn, albumentations, runstats
    • PyTorch >= 1.1

Setting up environment

Use the provided packaged archive (created using conda-pack):

  • mkdir -p mirex
  • tar -xzf mirex.tar.gz -C mirex
  • source mirex/bin/activate
  • conda-unpack

Or, create a new conda environment using the provided environment.yml file: conda create -f environment.yml

Running commands

generating sample data

python generate_sample_data.py -d data/ -i data/sample.wav

Feature extraction

python extract_features.py -s /home/scratch -i data/features_extraction.txt -n 4

Training

python train.py -s /home/scratch -i data/train.txt -n 4 -t kpop_mood

Classifying

python classify.py -s /home/scratch -i data/test.txt -o test_preds.txt -n 4 -t kpop_mood

Time taken

Features extraction

  • 4 threads ~ 5 min
  • ~ 1.5 GB memory for extracted features # maychange with parameters