-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEyal - Workshop 3.py
339 lines (284 loc) · 15.1 KB
/
Eyal - Workshop 3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import random
from torch.utils.data.dataloader import DataLoader
data_dir = 'HW1_files/'
"""Create Vocabulary"""
def split(string, delimiters):
"""
Split strings according to delimiters
:param string: full sentence
:param delimiters string: characters for spliting
function splits sentence to words
"""
delimiters = tuple(delimiters)
stack = [string, ]
for delimiter in delimiters:
for i, substring in enumerate(stack):
substack = substring.split(delimiter)
stack.pop(i)
for j, _substring in enumerate(substack):
stack.insert(i + j, _substring)
return stack
def get_vocabs(list_of_paths):
"""
Extract vocabs from given datasets. Return a word2ids and tag2idx.
:param file_paths: a list with a full path for all corpuses
Return:
- word2idx
- tag2idx
"""
word_dict = defaultdict(int)
pos_dict = defaultdict(int)
for file_path in list_of_paths:
with open(file_path) as f:
for line in f:
splited_words = split(line, (' ', '\n'))
del splited_words[-1]
for word_and_tag in splited_words:
word, pos_tag = split(word_and_tag, '_')
word_dict[word] += 1
pos_dict[pos_tag] += 1
return word_dict, pos_dict
# ******************* USAGE EXAMPLE (this is good practice) *******************
# path_train = "data/train.wtag"
# path_test = "data/test.wtag"
# paths_list = [path_train, path_test]
# word_dict, pos_dict = get_vocabs(paths_list)
# *****************************************************************************
"""Data Reader"""
from collections import defaultdict
class PosDataReader:
def __init__(self, file, word_dict, pos_dict):
self.file = file
self.word_dict = word_dict
self.pos_dict = pos_dict
self.sentences = []
self.__readData__()
def __readData__(self):
"""main reader function which also populates the class data structures"""
with open(self.file, 'r') as f:
for line in f:
cur_sentence = []
splited_words = split(line, (' ', '\n'))
del splited_words[-1]
for word_and_tag in splited_words:
cur_word, cur_tag = split(word_and_tag, '_')
cur_sentence.append((cur_word, cur_tag))
self.sentences.append(cur_sentence)
def get_num_sentences(self):
"""returns num of sentences in data"""
return len(self.sentences)
"""Dataset"""
from torchtext.vocab import Vocab
from torch.utils.data.dataset import Dataset, TensorDataset
from pathlib import Path
from collections import Counter
# These are not relevant for our POS tagger but might be usefull for HW2
UNKNOWN_TOKEN = "<unk>"
PAD_TOKEN = "<pad>" # Optional: this is used to pad a batch of sentences in different lengths.
# ROOT_TOKEN = PAD_TOKEN # this can be used if you are not padding your batches
# ROOT_TOKEN = "<root>" # use this if you are padding your batches and want a special token for ROOT
SPECIAL_TOKENS = [PAD_TOKEN, UNKNOWN_TOKEN]
class PosDataset(Dataset):
def __init__(self, word_dict, pos_dict, dir_path: str, subset: str,
padding=False, word_embeddings=None):
super().__init__()
self.subset = subset # One of the following: [train, test]
self.file = dir_path + subset + ".wtag"
self.datareader = PosDataReader(self.file, word_dict, pos_dict)
self.vocab_size = len(self.datareader.word_dict)
# TODO
# בחלק הזה הוא מסביר על זה שבדוגמא פה הוא עושה שימוש בגלוב עבור האמבדינג
# ניתן לשפר את המשקולות שלו לדאטא סט שלנו ולא בהכרח להישאר עם המשקולות הקבועות
# בנוסף, אנחנו נצטרך לעשות וורד-אמבדינג גם לטאגס
if word_embeddings:
self.word_idx_mappings, self.idx_word_mappings, self.word_vectors = word_embeddings
else: # pre-trained -- Download Glove
self.word_idx_mappings, self.idx_word_mappings, self.word_vectors = self.init_word_embeddings(
self.datareader.word_dict)
self.pos_idx_mappings, self.idx_pos_mappings = self.init_pos_vocab(self.datareader.pos_dict)
# במודל הזה אנחנו לא נעשה באטצ'ינג ואנחנו לא נעשה את הריפוד
# נעשה משהו שקול לעבודה עם באטצ'ים עלידי איזשהו טריק
# אבל בלי שימוש בבאטצ'ים באמת
self.pad_idx = self.word_idx_mappings.get(PAD_TOKEN)
# עבור מילים שלא ראיתי - המודל שלי ידע להתייחס אליהן אבל אני לא מכיר אותן
self.unknown_idx = self.word_idx_mappings.get(UNKNOWN_TOKEN)
self.word_vector_dim = self.word_vectors.size(-1)
self.sentence_lens = [len(sentence) for sentence in self.datareader.sentences]
# משפטים שארוכים מהאורך הזה ייחתכו
self.max_seq_len = max(self.sentence_lens)
# ממיר את המשפטים לדאטאסט - פונקציה חשובה
self.sentences_dataset = self.convert_sentences_to_dataset(padding)
def __len__(self):
return len(self.sentences_dataset)
def __getitem__(self, index):
word_embed_idx, pos_embed_idx, sentence_len = self.sentences_dataset[index]
return word_embed_idx, pos_embed_idx, sentence_len
@staticmethod
def init_word_embeddings(word_dict):
glove = Vocab(Counter(word_dict), vectors="glove.6B.300d", specials=SPECIAL_TOKENS)
return glove.stoi, glove.itos, glove.vectors
def get_word_embeddings(self):
return self.word_idx_mappings, self.idx_word_mappings, self.word_vectors
def init_pos_vocab(self, pos_dict):
idx_pos_mappings = sorted([self.word_idx_mappings.get(token) for token in SPECIAL_TOKENS])
pos_idx_mappings = {self.idx_word_mappings[idx]: idx for idx in idx_pos_mappings}
for i, pos in enumerate(sorted(pos_dict.keys())):
# pos_idx_mappings[str(pos)] = int(i)
pos_idx_mappings[str(pos)] = int(i + len(SPECIAL_TOKENS))
idx_pos_mappings.append(str(pos))
print("idx_pos_mappings -", idx_pos_mappings)
print("pos_idx_mappings -", pos_idx_mappings)
return pos_idx_mappings, idx_pos_mappings
def get_pos_vocab(self):
return self.pos_idx_mappings, self.idx_pos_mappings
def convert_sentences_to_dataset(self, padding):
# מחזירה מילון שמכיל דוגמאות של אינפוט ,לייבל וגודל הבאטצ' -
# מי שלא יעבוד עם באטצ' לא צריך את האחרון מביניהם
sentence_word_idx_list = list()
sentence_pos_idx_list = list()
sentence_len_list = list()
for sentence_idx, sentence in enumerate(self.datareader.sentences):
words_idx_list = []
pos_idx_list = []
for word, pos in sentence:
words_idx_list.append(self.word_idx_mappings.get(word))
pos_idx_list.append(self.pos_idx_mappings.get(pos))
sentence_len = len(words_idx_list)
# if padding:
# while len(words_idx_list) < self.max_seq_len:
# words_idx_list.append(self.word_idx_mappings.get(PAD_TOKEN))
# pos_idx_list.append(self.pos_idx_mappings.get(PAD_TOKEN))
sentence_word_idx_list.append(torch.tensor(words_idx_list, dtype=torch.long, requires_grad=False))
sentence_pos_idx_list.append(torch.tensor(pos_idx_list, dtype=torch.long, requires_grad=False))
sentence_len_list.append(sentence_len)
# if padding:
# all_sentence_word_idx = torch.tensor(sentence_word_idx_list, dtype=torch.long)
# all_sentence_pos_idx = torch.tensor(sentence_pos_idx_list, dtype=torch.long)
# all_sentence_len = torch.tensor(sentence_len_list, dtype=torch.long, requires_grad=False)
# return TensorDataset(all_sentence_word_idx, all_sentence_pos_idx, all_sentence_len)
return {i: sample_tuple for i, sample_tuple in enumerate(zip(sentence_word_idx_list,
sentence_pos_idx_list,
sentence_len_list))}
path_train = data_dir + "train1.wtag"
print("path_train -", path_train)
path_test = data_dir + "test1.wtag"
print("path_test -", path_test)
paths_list = [path_train, path_test]
word_dict, pos_dict = get_vocabs(paths_list)
train = PosDataset(word_dict, pos_dict, data_dir, 'train1', padding=False)
# ידגום לנו כל פעם משפטים מתוך הדאטא סט כי נרצה רנדומליות
train_dataloader = DataLoader(train, shuffle=True)
test = PosDataset(word_dict, pos_dict, data_dir, 'test1', padding=False)
# אין צורך ברנדומליות כי לא לומדים בשלב הזה
test_dataloader = DataLoader(test, shuffle=False)
print("Number of Train Tagged Sentences ", len(train))
print("Number of Test Tagged Sentences ",len(test))
"""Create a model"""
class DnnPosTagger(nn.Module):
def __init__(self, word_embeddings, hidden_dim, word_vocab_size, tag_vocab_size):
super(DnnPosTagger, self).__init__()
emb_dim = word_embeddings.shape[1]
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#self.word_embedding = nn.Embedding(word_vocab_size, word_embedding_dim)
# משתמשים בפרי-טריינד, פרייז=פאלס אומר שאנחנו נאמן את המשקולות בעצמנו גם
self.word_embedding = nn.Embedding.from_pretrained(word_embeddings, freeze=False)
# emb_dim גודל האינפוט
# hidden_dim גודל הפלט
self.lstm = nn.LSTM(input_size=emb_dim, hidden_size=hidden_dim, num_layers=2, bidirectional=True, batch_first=False)
# אם נקח את הערך המקסימלי ממה שיוצא בוקטור פה אז זה החיזוי של המודל שלנו
# כפול 2 כי אנחנו עושים בי-דירקושנל
self.hidden2tag = nn.Linear(hidden_dim*2, tag_vocab_size)
# מה שמצפה כל מודל של למידה עמוקה - איך להתקדם קדימה ברשת
# word_idx_tenseor, pos_idx_tensor אנחנו נדרש לקלט לפונקציה שהוא
def forward(self, word_idx_tensor):
embeds = self.word_embedding(word_idx_tensor.to(self.device)) # [batch_size, seq_length, emb_dim]
lstm_out, _ = self.lstm(embeds.view(embeds.shape[1], 1, -1)) # [seq_length, batch_size, 2*hidden_dim]
tag_space = self.hidden2tag(lstm_out.view(embeds.shape[1], -1)) # [seq_length, tag_dim]
tag_scores = F.log_softmax(tag_space, dim=1) # [seq_length, tag_dim]
return tag_scores
"""Evaluation Method"""
def evaluate():
acc = 0
# להגיד למודל לא ללמוד כרגע
with torch.no_grad():
# דוגמים מהדאטא לאודר
for batch_idx, input_data in enumerate(test_dataloader):
words_idx_tensor, pos_idx_tensor, sentence_length = input_data
tag_scores = model(words_idx_tensor)
tag_scores = tag_scores.unsqueeze(0).permute(0, 2, 1)
_, indices = torch.max(tag_scores, 1)
# עושים מעבר למעבד הרגיל לפני
acc += torch.mean(torch.tensor(pos_idx_tensor.to("cpu") == indices.to("cpu"), dtype=torch.float))
acc = acc / len(test)
return acc
"""Training The LSTM Model"""
# איך בפועל מעבדים לפי באטצ'ים
# CUDA_LAUNCH_BLOCKING=1
# פרמטרים למודל
EPOCHS = 15
WORD_EMBEDDING_DIM = 100
HIDDEN_DIM = 1000
word_vocab_size = len(train.word_idx_mappings)
tag_vocab_size = len(train.pos_idx_mappings)
model = DnnPosTagger(train_dataloader.dataset.word_vectors, HIDDEN_DIM, word_vocab_size, tag_vocab_size)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
if use_cuda:
model.cuda()
# Define the loss function as the Negative Log Likelihood loss (NLLLoss)
loss_function = nn.NLLLoss()
# We will be using a simple SGD optimizer to minimize the loss function
optimizer = optim.Adam(model.parameters(), lr=0.01)
acumulate_grad_steps = 50 # This is the actual batch_size, while we officially use batch_size=1
# Training start
print("Training Started")
accuracy_list = []
loss_list = []
epochs = EPOCHS
for epoch in range(epochs):
acc = 0 # to keep track of accuracy
printable_loss = 0 # To keep track of the loss value
i = 0
for batch_idx, input_data in enumerate(train_dataloader):
i += 1
words_idx_tensor, pos_idx_tensor, sentence_length = input_data
tag_scores = model(words_idx_tensor)
tag_scores = tag_scores.unsqueeze(0).permute(0, 2, 1)
# print("tag_scores shape -", tag_scores.shape)
# print("pos_idx_tensor shape -", pos_idx_tensor.shape)
loss = loss_function(tag_scores, pos_idx_tensor.to(device))
# כאילו צוברים את הדרגיאנטים
loss = loss / acumulate_grad_steps
loss.backward()
# במשך 50 צעדים צברנו גרדיאנטים מנורמלים ואז אנחנו רק עושים את הצעד
if i % acumulate_grad_steps == 0:
optimizer.step()
# כדי שפעם הבאה שנעשה בקוורד זה יתווסף ל0 ולא למה שהיה לנו פה
model.zero_grad()
printable_loss += loss.item()
#
_, indices = torch.max(tag_scores, 1)
# print("tag_scores shape-", tag_scores.shape)
# print("indices shape-", indices.shape)
# acc += indices.eq(pos_idx_tensor.view_as(indices)).mean().item()
# הממוצע בפקודה הבאה חסר משמעות כי זה רק דגימה 1
acc += torch.mean(torch.tensor(pos_idx_tensor.to("cpu") == indices.to("cpu"), dtype=torch.float))
printable_loss = printable_loss / len(train)
# צריך להיות על כל האפוק של הטריין
acc = acc / len(train)
loss_list.append(float(printable_loss))
accuracy_list.append(float(acc))
# מחשב את ההצלחה על המבחן
test_acc = evaluate()
e_interval = i
print("Epoch {} Completed,\tLoss {}\tAccuracy: {}\t Test Accuracy: {}".format(epoch + 1,
np.mean(loss_list[-e_interval:]),
np.mean(accuracy_list[-e_interval:]),
test_acc))
# עם עוד עבודה על פרמטרים וגם עבודה אלגוריתמית אפשר לשפר מאוד את המודל