forked from NVIDIA/NeMo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistributed_adam.py
853 lines (731 loc) · 32.8 KB
/
distributed_adam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import contextlib
import itertools
from typing import Callable, Dict, Iterable, Optional, Tuple, Union
import torch
from apex.contrib.optimizers.distributed_fused_adam import (
DistributedFusedAdam,
_disable_pre_forward_hook,
_multi_tensor_copy,
)
try:
import apex.contrib.nccl_allocator as nccl_allocator
except ImportError:
nccl_allocator = None
from megatron.core import parallel_state
from megatron.core.dist_checkpointing.dict_utils import dict_list_map_inplace
from megatron.core.dist_checkpointing.mapping import ShardedTensor
from megatron.core.dist_checkpointing.optimizer import get_param_id_to_sharded_param_map, optim_state_to_sharding_state
from nemo.utils import logging, str_to_dtype
from nemo.utils.te_utils import is_float8tensor, is_mxfp8tensor, te_version
if te_version() >= (2, 0):
# TE quantization logic using quantizer API
# Supported TE versions: 2.0+
from transformer_engine.pytorch.tensor.float8_tensor import Float8Tensor
def _quantize_param_fragment_impl(
input_: torch.Tensor,
*,
out: torch.Tensor,
param: torch.nn.Parameter,
) -> None:
quantizer = param._quantizer
out = Float8Tensor(
shape=input_.size(),
dtype=param.dtype,
requires_grad=False,
data=out,
fp8_scale_inv=param._scale_inv,
fp8_dtype=param._fp8_dtype,
quantizer=quantizer,
)
quantizer.update_quantized(input_, out)
def _get_fp8_scale_and_amax_impl(tensor: Float8Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
quantizer = tensor._quantizer
return quantizer.scale, quantizer.amax
elif te_version() >= (1, 0):
# TE quantization logic with fp8_meta dicts
# Supported TE versions: 1.0 - 1.14
from transformer_engine.pytorch.cpp_extensions import cast_to_fp8
def _quantize_param_fragment_impl(
input_: torch.Tensor,
*,
out: torch.Tensor,
param: torch.nn.Parameter,
) -> None:
cast_to_fp8(
src.view(1, -1),
param._fp8_meta["scaling_fwd"],
param._fp8_meta_index,
param._fp8_dtype,
out=dst.view(1, -1),
)
def _get_fp8_scale_and_amax_impl(tensor) -> Tuple[torch.Tensor, torch.Tensor]:
fp8_meta = tensor._fp8_meta["scaling_fwd"]
fp8_meta_index = tensor._fp8_meta_index
return fp8_meta.scale[fp8_meta_index], fp8_meta.amax_history[0][fp8_meta_index]
else:
# Fallback impl if TE version is invalid
def _quantize_param_fragment_impl(*args, **kwargs) -> None:
raise RuntimeError("Invalid Transformer Engine version for FP8 distributed optimizer")
def _get_fp8_scale_and_amax_impl(*args, **kwargs):
raise RuntimeError("Invalid Transformer Engine version for FP8 distributed optimizer")
def quantize_param_fragment(
input_: torch.Tensor,
*,
out: torch.Tensor,
param: torch.nn.Parameter,
) -> None:
"""Cast values in parameter fragment to FP8
Arguments:
input_ (torch.Tensor): Values to quantize.
out (torch.Tensor): Raw UINT8 buffer to fill with FP8 values.
Dimensions should match input_.
param (torch.nn.Parameter): Parameter containing this parameter
fragment. Must be a Float8Tensor.
"""
_quantize_param_fragment_impl(input_, out=out, param=param)
def get_fp8_scale_and_amax(tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Get FP8 scale and amax from Float8Tensor"""
return _get_fp8_scale_and_amax_impl(tensor)
_distributed_pgs = {}
def create_distributed_pgs(*, distributed_size: int) -> Dict:
"""Create process groups for distributing within multiple devices.
User can reuse this function to reorder communicators for SHArP.
Arguments:
distributed_size (int): the number of devices to distribute optimizer
state over.
"""
global _distributed_pgs
assert torch.distributed.is_initialized()
if _distributed_pgs:
return _distributed_pgs
world_size = torch.distributed.get_world_size()
rank = torch.distributed.get_rank()
devices = distributed_size
nodes = world_size // devices
if nodes * devices != world_size:
logging.warning("Expected all nodes have the same amout of devices, disable distribute_within_nodes.")
return {}
node_id = rank // devices
device_id = rank % devices
distributed_pgs = []
for i in range(nodes):
ranks = [i * devices + j for j in range(devices)]
pg = torch.distributed.new_group(ranks=ranks)
distributed_pgs.append(pg)
redundant_pgs = []
for i in range(devices):
ranks = [i + j * devices for j in range(nodes)]
pg = torch.distributed.new_group(ranks=ranks)
redundant_pgs.append(pg)
# To re-order SHArP communicator right after distributed init,
# we have to expose redundant_process_group to user.
# User has too invoke allreduce through redundant_process_group
# before all other communicators to lock SHArP tree.
_distributed_pgs = {
'world_size': world_size,
'rank': rank,
'devices': devices,
'nodes': nodes,
'node_id': node_id,
'device_id': device_id,
'distributed_process_group': distributed_pgs[node_id],
'redundant_process_group': redundant_pgs[device_id],
}
return _distributed_pgs
def create_distribute_within_nodes_pgs():
"""Create process groups for distributing within nodes.
User can reuse this function to reorder communicators for SHArP.
This funcion is kept for backward compatibility.
"""
return create_distributed_pgs(distributed_size=torch.cuda.device_count())
class MegatronDistributedFusedAdam(DistributedFusedAdam):
"""Adam optimizer with ZeRO algorithm
Child class of Apex DistributedFusedAdam, with optimizations for
NeMo-Megatron.
Arguments:
params (iterable): iterable of parameters to optimize or dicts
defining parameter groups.
disable_distributed_parameters (bool, optional): use standard
data-parallel communication instead of ZeRO.
(default: False)
distribute_within_nodes (bool, optional): distribute states
within the same node, e.g. DGX. This can improve performance
but requires larger memory than distributing within all
ranks, especially for pure data parallel models.
(default: False).
distributed_size (int, optional): the number of devices to
distribute optimizer state over.
lock_timeout (float, optional): timeout for callback mutex in
seconds.
**kwargs: keyword arguments to pass to Apex
DistributedFusedAdam.
"""
def __init__(
self,
params: Union[Iterable[torch.nn.Parameter], Iterable[dict]],
disable_distributed_parameters: bool = False,
distribute_within_nodes: bool = False,
distributed_size: Optional[int] = None,
lock_timeout: Optional[float] = None,
**kwargs,
):
# Update distributed_size settings
if distribute_within_nodes:
if distributed_size is not None and distributed_size != torch.cuda.device_count():
raise ValueError("Inconsistent distributed_size value")
distributed_size = torch.cuda.device_count()
# Initialize process groups
if 'process_group' not in kwargs and parallel_state.is_initialized():
kwargs['process_group'] = parallel_state.get_data_parallel_group(with_context_parallel=True)
if disable_distributed_parameters:
world_size = torch.distributed.get_world_size()
rank = torch.distributed.get_rank()
self_groups = [torch.distributed.new_group(ranks=[i]) for i in range(world_size)]
kwargs['distributed_process_group'] = self_groups[rank]
kwargs['redundant_process_group'] = kwargs['process_group']
elif distributed_size is not None:
dist_pg_infos = create_distributed_pgs(distributed_size=distributed_size)
if dist_pg_infos:
kwargs['distributed_process_group'] = dist_pg_infos['distributed_process_group']
kwargs['redundant_process_group'] = dist_pg_infos['redundant_process_group']
global _distributed_pgs
_distributed_pgs = {}
# Make sure dtypes are in right type
for keyword in ('dtype', 'grad_sync_dtype', 'param_sync_dtype'):
if keyword in kwargs:
kwargs[keyword] = str_to_dtype(kwargs[keyword])
# Make sure params are in consistent format (list of param group dicts)
param_groups = list(params)
assert param_groups
if not isinstance(param_groups[0], dict):
param_groups = [{'params': param_groups}]
# Construct distributed optimizer
super().__init__(param_groups, **kwargs)
# Create mutex with timeout
self._lock_with_timeout = None
if lock_timeout is not None:
@contextlib.contextmanager
def lock_with_timeout():
result = self._lock.acquire(timeout=lock_timeout)
try:
yield result
finally:
if result:
# Acquired lock before timeout
self._lock.release()
else:
# Failed to acquire lock before timeout
print(f'MegatronDistributedFusedAdam: Failed to acquire lock within {lock_timeout} seconds.')
self._lock_with_timeout = lock_with_timeout
# Check for MXFP8 parameters
if any(is_mxfp8tensor(param) for param in self.parameters()):
raise ValueError("Distributed optimizer currently does not support MXFP8 parameters")
def _broadcast_params(self) -> None:
# Assume params have already been synchronized
pass
def _make_post_backward_hook(self, param: torch.nn.Parameter, param_group_id: int, param_id: int) -> Callable:
def hook(*unused):
if getattr(param, '_pre_forward_hook_is_enabled', False):
raise RuntimeError(
'A parameter called its post-backward hook '
'before its pre-forward hook. '
'Please manually interact with the parameter '
'before the forward pass (e.g. by calling data_ptr) '
'or run DistributedFusedAdam with overlap_param_sync=False.'
)
lock = self._lock
if self._lock_with_timeout is not None:
lock = self._lock_with_timeout()
with lock:
need_to_initialize = 'fragments' not in self.state[param]
if need_to_initialize:
self._init_param_state(param, param_group_id, param_id)
if self.greedy_grad_copy and not getattr(param, '_disable_greedy_grad_copy', False):
self._grad_copy(param)
if self.overlap_grad_sync and not getattr(param, '_disable_overlap_grad_sync', False):
self._try_start_bucket_grad_sync(
params=[param],
ignore_last_bucket=need_to_initialize,
)
return hook
def init_params(
self,
params: Optional[Iterable[torch.nn.Parameter]] = None,
param_sync_dtype: Optional[torch.dtype] = None,
**kwargs,
) -> None:
"""Initialize optimizer state for parameters
Initializes FP8 and non-FP8 params separately.
"""
# Default cases
if params is None:
params = self.parameters()
elif isinstance(params, torch.Tensor):
params = [params]
# Ignore parameters that have already been initialized
params = [param for param in params if "fragments" not in self.state[param]]
if not params:
return
# Initialize FP8 and non-FP8 tensors separately
if any(is_float8tensor(param) for param in params):
super().init_params(
filter(is_float8tensor, params),
param_sync_dtype=torch.uint8,
**kwargs,
)
super().init_params(
params,
param_sync_dtype=param_sync_dtype,
**kwargs,
)
def init_params_bucket(
self,
params: Iterable[torch.nn.Parameter],
grad_sync_dtype: Optional[torch.dtype] = None,
param_sync_dtype: Optional[torch.dtype] = None,
**kwargs,
) -> None:
"""Initialize optimizer state for parameters in one effective bucket"""
# Ignore parameters that have already been initialized
if isinstance(params, torch.Tensor):
params = [params]
params = [param for param in params if "fragments" not in self.state[param]]
if not params:
return
# Initialize parameters with FP32 grads
fp32_params = []
remaining_params = []
for param in params:
if getattr(param, '_with_fp32_optimizer', False):
fp32_params.append(param)
else:
remaining_params.append(param)
params = remaining_params
start_bucket_id = len(self.state["buckets"])
super().init_params_bucket(
fp32_params,
grad_sync_dtype=torch.float32,
param_sync_dtype=param_sync_dtype,
**kwargs,
)
end_bucket_id = len(self.state["buckets"])
fp32_buckets = self.state["buckets"][start_bucket_id:end_bucket_id]
# Initialize FP8 parameters
fp8_params = []
remaining_params = []
for param in params:
if is_float8tensor(param):
fp8_params.append(param)
else:
remaining_params.append(param)
params = remaining_params
start_bucket_id = len(self.state["buckets"])
super().init_params_bucket(
fp8_params,
grad_sync_dtype=grad_sync_dtype,
param_sync_dtype=torch.uint8,
**kwargs,
)
end_bucket_id = len(self.state["buckets"])
fp8_buckets = self.state["buckets"][start_bucket_id:end_bucket_id]
# Initialize remaining parameters as usual
normal_buckets = []
start_bucket_id = len(self.state["buckets"])
super().init_params_bucket(
params,
grad_sync_dtype=grad_sync_dtype,
param_sync_dtype=param_sync_dtype,
**kwargs,
)
end_bucket_id = len(self.state["buckets"])
normal_buckets = self.state["buckets"][start_bucket_id:end_bucket_id]
def add_param_to_bucket(
param: torch.nn.Parameter,
bucket: self.StateBucket,
) -> None:
"""Add trivial param fragment to bucket"""
param_fragments = self.state[param]["fragments"]
param_group_id = param_fragments[0].param_group_id
param_id = param_fragments[0].param_id
bucket_id = bucket.fragments[0].bucket_id
param_size = param.numel()
bucket_size = bucket.bucket_size
fragment = self.ParameterFragment(
param_group_id=param_group_id,
param_id=param_id,
bucket_id=bucket_id,
param_range=(param_size, param_size),
bucket_range=(bucket_size, bucket_size),
in_local_shard=False,
shard_range=None,
shard_bucket_range=None,
shard_param_range=None,
)
param_fragments.append(fragment)
bucket.fragments.append(fragment)
# Make sure all added buckets depend on provided params
for bucket in fp32_buckets:
for param in itertools.chain(fp8_params, params):
add_param_to_bucket(param, bucket)
for bucket in fp8_buckets:
for param in itertools.chain(fp32_params, params):
add_param_to_bucket(param, bucket)
for bucket in normal_buckets:
for param in itertools.chain(fp32_params, fp8_params):
add_param_to_bucket(param, bucket)
def _init_param_state(
self,
param: torch.nn.Parameter,
param_group_id: int,
param_id: int,
param_sync_dtype: Optional[torch.dtype] = None,
**kwargs,
) -> None:
"""Initialize optimizer state for a parameter
Initializing the master weights requires slicing a flattened
view of the param. FP8 tensors do not handle these operations
gracefully, so we hack around it by explicitly casting to
FP32.
"""
# Initialize non-FP8 params as usual
if not is_float8tensor(param):
super()._init_param_state(
param,
param_group_id,
param_id,
param_sync_dtype=param_sync_dtype,
**kwargs,
)
# Return immediately if already initialized
if "fragments" in self.state[param]:
return
# Initialize with FP32 copy of param
fp32_param = param.float()
super()._init_param_state(
fp32_param,
param_group_id,
param_id,
param_sync_dtype=torch.uint8,
**kwargs,
)
self.state[param].update(self.state[fp32_param])
del self.state[fp32_param]
@torch.no_grad()
def init_param_buffer(self) -> None:
"""Allocate contiguous buffers for param buckets
For FP8 params, the FP8 data buffer is made a view into a
contiguous buffer.
"""
# Make sure all params are initialized
self.contiguous_param_buffer = True
self.init_params()
# Construct param buffers
buffer_sizes = collections.defaultdict(lambda: 0)
for bucket in self.state["buckets"]:
dtypes = bucket.dtypes()
buffer_sizes[dtypes] = max(bucket.contiguous_buffer_offset + bucket.bucket_size, buffer_sizes[dtypes])
for dtypes, buffer_size in buffer_sizes.items():
_, _, param_sync_dtype = dtypes
if getattr(self, "nccl_ub", False):
if not nccl_allocator:
raise RuntimeError("NCCL allocator importing failed but nccl ub is still requested")
with nccl_allocator.nccl_mem():
self._param_buffers[dtypes] = torch.zeros(
[buffer_size], dtype=param_sync_dtype, device=self.device
)
else:
self._param_buffers[dtypes] = torch.zeros([buffer_size], dtype=param_sync_dtype, device=self.device)
# Figure out corresponding positions in params and param buffer
params = list(self.parameters())
param_flat_views = []
param_buffer_views = []
for i, param in enumerate(params):
fragment = self.state[param]["fragments"][0]
bucket_id = fragment.bucket_id
bucket = self.state["buckets"][bucket_id]
param_size = param.numel()
bucket_start, _ = fragment.bucket_range
buffer_offset = bucket.contiguous_buffer_offset
buffer_start = buffer_offset + bucket_start
buffer_end = buffer_start + param_size
param_buffer = self._param_buffers[bucket.dtypes()]
param_buffer_view = param_buffer[buffer_start:buffer_end].detach()
if param_buffer_view.device != param.device:
raise RuntimeError(
"Attempted to change a parameter with device={param.device} "
f"into a buffer view with device={param_buffer_view.device}"
)
if is_float8tensor(param):
param_flat_views.append(param._data.detach().view(-1))
else:
if param_buffer_view.dtype != param.dtype:
raise RuntimeError(
f"Attempted to change a parameter with dtype={param.dtype} "
f"into a buffer view with dtype={param_buffer_view.dtype}"
)
if param.is_contiguous(memory_format=torch.channels_last):
param = param.permute(0, 2, 3, 1)
param_flat_views.append(param.detach().view(-1))
param_buffer_views.append(param_buffer_view)
# Copy values into param buffer
_multi_tensor_copy(
param_flat_views,
param_buffer_views,
dummy_overflow_buf=self._dummy_overflow_buf,
)
# Make all params a view into the param buffer
for param, buffer_view in zip(params, param_buffer_views):
if is_float8tensor(param):
param._data = buffer_view.view(param.size())
else:
# Preserve memory format for param here, i.e. NHWC tensors
# `param.data.set_()` failed to change storage.
# `param.set_()` invalidates bprop hook.
param.data = torch.as_strided(
buffer_view,
param.size(),
param.stride(),
storage_offset=buffer_view.storage_offset(),
)
def try_grad_sync(self, params: Iterable[torch.nn.Parameter]) -> None:
"""Attempt to launch gradient synchronization"""
def is_grad_copy_enabled(param: torch.nn.Parameter) -> bool:
return not getattr(param, '_disable_greedy_grad_copy', False) and not getattr(
param, '_disable_overlap_grad_sync', False
)
params = list(filter(is_grad_copy_enabled, params))
for p in params:
self._grad_copy(p)
self._try_start_bucket_grad_sync(params=params)
def zero_grad(self, *args, **kwargs) -> None:
"""Clear parameter gradients"""
super().zero_grad(*args, **kwargs)
# Reset main grads
if self.contiguous_grad_buffer:
for param in self.parameters():
with _disable_pre_forward_hook(param):
param.main_grad = self.grad_buffer_view(param)
def grad_norm(
self,
parameters: Optional[Iterable[torch.nn.Parameter]] = None,
norm_type: float = 2.0,
force: bool = False,
) -> torch.Tensor:
"""L2 norm of parameter gradients"""
assert norm_type == 2
if parameters is not None:
# Make sure we can access iterable multiple times
parameters = list(parameters)
# Compute grad norm
if force or self._grad_norm is None:
# Compute norm of local gradients for distributed optimizer
grad_norm_sq = self._local_grad_norm(parameters=parameters, norm_type=norm_type)
if self.redundant_size > 1:
grad_norm_sq /= self.redundant_size
# Sum over all procs to get grad norm
torch.distributed.all_reduce(
grad_norm_sq,
op=torch.distributed.ReduceOp.SUM,
)
self._grad_norm = grad_norm_sq.sqrt()
# Use cached grad norm
return super().grad_norm()
@torch.no_grad()
def _param_copy_fragments(self, fragments: Iterable[DistributedFusedAdam.ParameterFragment]) -> None:
"""Update parameter fragments with values from parameter buckets
For FP8 params, values are copied directly into the FP8 data
buffer.
"""
# Figure out corresponding positions in param buckets and params
buffers_in = []
buffers_out = []
fragments = list(fragments)
for fragment in fragments:
# Check if fragment needs to be updated
bucket_id = fragment.bucket_id
bucket_start, bucket_end = fragment.bucket_range
param_start, param_end = fragment.param_range
if param_end <= param_start or bucket_id not in self._params_buckets:
continue
# Corresponding positions in bucket and param
param_bucket = self._params_buckets[bucket_id]
param = self.parameter(fragment)
buffer_in = param_bucket.params_bucket[bucket_start:bucket_end]
if is_float8tensor(param):
# Copy into FP8 params's data buffer
assert (
param_bucket.params_bucket.dtype == torch.uint8
), "Expected FP8 params to perform param sync in UINT8"
buffer_out = param._data.view(-1)[param_start:param_end]
buffers_in.append(buffer_in)
buffers_out.append(buffer_out)
elif torch.is_floating_point(buffer_in) and torch.is_floating_point(param):
# Conv with NHWC layout, i.e. shape (N, C, H, W) and stride
# (HWC, 1, WC, C), can't `.view(-1)`. Here to turn it to
# tensor with shape (N, H, W, C) and stride (HWC, WC, C, 1).
# Note: https://github.com/NVIDIA/apex/pull/1794
if param.is_contiguous(memory_format=torch.channels_last):
param = param.permute(0, 2, 3, 1)
# Cast between floating-point dtypes
buffer_out = param.detach().view(-1)[param_start:param_end]
buffers_in.append(buffer_in)
buffers_out.append(buffer_out)
else:
# Copy most significant bytes for non-floating-point
# dtypes
# Note: Assume dtypes are little-endian
buffer_out = param.detach().view(-1)[param_start:param_end]
in_bytes = buffer_in.unsqueeze(-1).view(torch.uint8)
out_bytes = buffer_out.unsqueeze(-1).view(torch.uint8)
copy_size = min(in_bytes.size(-1), out_bytes.size(-1))
buffers_in.append(in_bytes[..., -copy_size:])
buffers_out.append(out_bytes[..., -copy_size:])
if copy_size < out_bytes.size(-1):
out_bytes[..., :-copy_size].zero_()
# Copy data from parameter buckets to parameters
_multi_tensor_copy(
buffers_in,
buffers_out,
dummy_overflow_buf=self._dummy_overflow_buf,
)
# Update transpose caches
params = set(self.parameter(fragment) for fragment in fragments)
for param in params:
if is_float8tensor(param):
param._reset_caches()
@torch.no_grad()
def _check_params_shard_dtypes(self, params_buckets: Dict[int, DistributedFusedAdam.ParameterBucket]) -> None:
"""Make sure local shards of parameters are in expected datatypes
For FP8 params, FP32 values are cast into FP8 using per-param
scaling factors and per-param amaxes are computed and reduced.
"""
# Just call base class function if there are no FP8 tensors
num_fp8_params = sum(1 for param in self.parameters() if is_float8tensor(param))
if num_fp8_params == 0:
super()._check_params_shard_dtypes(params_buckets)
return
# Cast local data to FP8
fp8_params_shards = dict()
for bucket_id, param_bucket in params_buckets.items():
state_bucket = self.state["buckets"][bucket_id]
if state_bucket.param_sync_dtype != torch.uint8:
continue
# Initialize FP8 buffer for param sync
params_shard = param_bucket.params_shard
if self.contiguous_param_buffer:
shard_size = state_bucket.shard_size
buffer_offset = state_bucket.contiguous_buffer_offset
buffer_start = buffer_offset + self.distributed_rank * shard_size
buffer_end = buffer_start + shard_size
param_buffer = self._param_buffers[state_bucket.dtypes()]
fp8_params_shard = param_buffer[buffer_start:buffer_end]
else:
fp8_params_shard = torch.empty_like(params_shard, dtype=torch.uint8)
param_bucket.params_shard = fp8_params_shard
# Cast param fragments to FP8
for fragment in self.state["buckets"][bucket_id].fragments:
param = self.parameter(fragment)
if not is_float8tensor(param):
continue
if not fragment.in_local_shard:
continue
shard_start, shard_end = fragment.shard_range
if shard_end <= shard_start:
continue
shard_range = slice(shard_start, shard_end)
quantize_param_fragment(
params_shard[shard_range],
out=fp8_params_shard[shard_range],
param=param,
)
# Update FP8 scaling factors when all buckets have processed
if getattr(self, "_check_params_shard_dtypes_progress", None) is None:
self._check_params_shard_dtypes_progress = []
self._check_params_shard_dtypes_progress.extend(params_buckets.keys())
if len(self._check_params_shard_dtypes_progress) == len(self.state["buckets"]):
assert len(set(self._check_params_shard_dtypes_progress)) == len(self.state["buckets"])
# FP8 scaling factors
amaxes = []
scales = []
scale_invs = []
i = -1
for param in self.parameters():
if not is_float8tensor(param):
continue
i += 1
scale, amax = get_fp8_scale_and_amax(param)
amaxes.append(amax.view(1))
scales.append(scale.view(1))
scale_invs.append(param._scale_inv.view(1))
# Update cached scale-inverses
packed_scales = torch.empty(num_fp8_params, dtype=torch.float32, device=self.device)
packed_scale_views = [packed_scales[i].view(1) for i in range(num_fp8_params)]
_multi_tensor_copy(
scales,
packed_scale_views,
dummy_overflow_buf=self._dummy_overflow_buf,
)
torch.reciprocal(packed_scales, out=packed_scales)
_multi_tensor_copy(
packed_scale_views,
scale_invs,
dummy_overflow_buf=self._dummy_overflow_buf,
)
# Reduce amaxes
# Note: Assume each param has a separate amax
packed_amaxes = torch.empty(num_fp8_params, dtype=torch.float32, device=self.device)
packed_amax_views = [packed_amaxes[i].view(1) for i in range(num_fp8_params)]
_multi_tensor_copy(
amaxes,
packed_amax_views,
dummy_overflow_buf=self._dummy_overflow_buf,
)
torch.distributed.all_reduce(
packed_amaxes,
op=torch.distributed.ReduceOp.MAX,
group=self.distributed_process_group,
)
_multi_tensor_copy(
packed_amax_views,
amaxes,
dummy_overflow_buf=self._dummy_overflow_buf,
)
# Reset
self._check_params_shard_dtypes_progress = None
# Handle any remaining dtype conversions
super()._check_params_shard_dtypes(params_buckets)
def sharded_state_dict(self, model_sharded_state_dict, optimizer_state_dict=None):
"""Create sharded state dict"""
if optimizer_state_dict is None:
optimizer_state_dict = self.state_dict()
id_to_sharded_param_map = get_param_id_to_sharded_param_map(
model_sharded_state_dict=model_sharded_state_dict,
optim_params_iter=self.parameters(),
)
# Convert state
step = optimizer_state_dict['state'].pop('step')
state_dict_format = optimizer_state_dict.pop('format', None)
optim_state_to_sharding_state(optimizer_state_dict, id_to_sharded_param_map)
optimizer_state_dict['state']['step'] = step
if state_dict_format is not None:
optimizer_state_dict['format'] = state_dict_format
def rename_fp32_params(x):
if isinstance(x, ShardedTensor) and x.key.startswith('optimizer.state.param'):
x.key = x.key.replace('optimizer.state.param', 'optimizer.state.fp32_param')
return x
dict_list_map_inplace(rename_fp32_params, optimizer_state_dict)
return optimizer_state_dict