-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain_summarization.sh
40 lines (39 loc) · 1.12 KB
/
train_summarization.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
accelerate launch train_summarization.py \
--learning_rate 1e-4 \
--seed 11 \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--pad_to_max_length \
--max_source_length 512 \
--output_dir exp_results/cnn_dailymail/lr1e-5 \
--num_train_epochs 15 \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 32 \
--gradient_accumulation_steps 4 \
--model_name_or_path LoftQ/bart-large-bit4-rank16 \
--do_train --do_eval --do_predict \
--logging_steps 100 \
--save_steps 10000 \
--evaluation_strategy epoch \
--report_to tensorboard \
--predict_with_generate
# lora fine-tune xsum
accelerate launch train_summarization.py \
--learning_rate 1e-4 \
--seed 11 \
--dataset_name xsum \
--dataset_config "3.0.0" \
--pad_to_max_length \
--max_source_length 512 \
--output_dir exp_results/xsum/lr1e-5 \
--num_train_epochs 25 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 32 \
--gradient_accumulation_steps 4 \
--model_name_or_path LoftQ/bart-large-bit4-rank16 \
--do_train --do_eval --do_predict \
--logging_steps 100 \
--save_steps 10000 \
--evaluation_strategy epoch \
--report_to tensorboard \
--predict_with_generate