-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathtrain_imagenet.py
385 lines (350 loc) · 15 KB
/
train_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
'''
Reproducing https://github.com/gcr/torch-residual-networks
References:
Kaimin He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. "Deep Residual Learning for Image Recognition"
'''
import mxnet as mx
import argparse
import os
import logging
import time
import numpy as np
parser = argparse.ArgumentParser(description='train an image classifer on ImageNet')
parser.add_argument('--network', type=str, default='symbol_cross',
help = 'the cnn to use, choices = [\'symbol_cross\', \'symbol_resnet\']')
parser.add_argument('--data-dir', type=str, default=r'../imagenet/',
help='the input data directory')
parser.add_argument('--gpus', type=str, default='0,1,2,3',
help='the gpus will be used, e.g "0,1,2,3,4,5,6,7"')
parser.add_argument('--batch-size', type=int, default=256,
help='the batch size')
parser.add_argument('--model-prefix', type=str, default='./imagenet/',
help='the prefix of the model to load/save')
parser.add_argument('--load-model', type=str,
help='the name of the model to load')
parser.add_argument('--num-epochs', type=int, default=120,
help='the number of training epochs')
parser.add_argument('--log-file', type=str, default='log.txt', help='the name of log file')
parser.add_argument('--log-dir', type=str, default='./imagenet/', help='directory of the log file')
parser.add_argument('--lr', type=float, default=0.1,
help='the initial learning rate')
parser.add_argument('--lr-factor', type=float, default=0.1,
help='times the lr with a factor for every lr-factor-epoch epoch')
parser.add_argument('--lr-epoch-step', type=int, default=30,
help='the number of epoch to factor the lr, could be 10')
parser.add_argument('--load-epoch', type=int,
help="load the model on an epoch using the model-prefix")
parser.add_argument('--kv-store', type=str, default='device',
help='the kvstore type')
parser.add_argument('--num-examples', type=int, default=1281167,
help='the number of training examples')
parser.add_argument('--num-classes', type=int, default=1000,
help='the number of classes')
parser.add_argument('--train-dataset', type=str, default="imagenet_train.rec",
help='train dataset name')
parser.add_argument('--val-dataset', type=str, default="imagenet_val.rec",
help="validation dataset name")
parser.add_argument('--data-shape', type=int, default=224,
help='set image\'s shape')
parser.add_argument('--aug-type', type=int, default=1,
help='augmentation type')
parser.add_argument('--rand_seed', type=int,
help='random seed for initialization')
parser.add_argument('--fb-mean', type=bool, default=False,
help='using my own mean values or fbs')
args = parser.parse_args()
# network
import importlib
import sys
net = importlib.import_module(args.network).get_symbol(args.num_classes)
os.environ["CUDA_VISIBLE_DEVICES"]=args.gpus
os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"]='1'
if args.rand_seed is None:
import time
args.rand_seed=int(time.time()) #different random init for serveral runs
mx.random.seed(args.rand_seed) #cudnn conv backward is non-deterministic
exp_name=args.log_file[:args.log_file.rfind('.')]
args.network='net_'+args.network+'/'+args.network+'_'+exp_name+'/'+args.network
def get_iterator(args, kv):
kargs = dict(
data_shape=(3, args.data_shape, args.data_shape),
#zscore
mean_r=123.675 if args.fb_mean else 123.370,
mean_g=116.280 if args.fb_mean else 112.757,
mean_b= 103.530 if args.fb_mean else 99.406,
fill_value_r=124 if args.fb_mean else 123,
fill_value_g=116 if args.fb_mean else 113,
fill_value_b=104 if args.fb_mean else 99,
scale_r=(1.0 / 58.395) if args.fb_mean else (1.0 / 68.998),
scale_g=(1.0 / 57.12) if args.fb_mean else (1.0 / 66.093),
scale_b=(1.0 / 57.375) if args.fb_mean else (1.0 / 68.292),
)
train = mx.io.ImageRecordIter(
path_imgrec = os.path.join(args.data_dir, args.train_dataset),
batch_size=args.batch_size,
shuffle=True,
#data augmentation: affine transformation->random crop
rand_crop=True,
rand_mirror=True,
min_random_scale=0.533, #480*0.533=255.84
max_random_scale=1.0 if args.aug_type>0 else 0.533,
min_img_size=256, #255.84->256; [256,480]
max_aspect_ratio=0.25 if args.aug_type>0 else 0, #aspect [0.75,1.25]
#random color jitter
random_h=36 if args.aug_type>0 else 0,
random_s=50 if args.aug_type>0 else 0,
random_l=50 if args.aug_type>0 else 0,
# #others
inter_method=9, #auto select resize method: bilinear, cubic, etc.
num_parts=kv.num_workers,
part_index=kv.rank,
# Preprocessing thread number
preprocess_threads=8,
**kargs
)
val = mx.io.ImageRecordIter(
path_imgrec = os.path.join(args.data_dir, args.val_dataset),
shuffle=False,
rand_crop=False, #center crop
rand_mirror=False,
min_random_scale=0.533, #480*0.533=255.84
max_random_scale=0.533, #480*0.533=255.84
min_img_size=256, #255.84->256
inter_method=9, #auto
batch_size=args.batch_size,
num_parts=kv.num_workers,
part_index=kv.rank,
# Preprocessing thread number
preprocess_threads=8,
**kargs
)
return (train, val)
class Init(mx.init.Xavier):
def __init__(self,rnd_type="uniform", factor_type="avg", magnitude=3):
self.rnd_type = rnd_type
self.factor_type = factor_type
self.magnitude = float(magnitude)
def __call__(self, name, arr):
"""Override () function to do Initialization
Parameters
----------
name : str
name of corrosponding ndarray
arr : NDArray
ndarray to be Initialized
"""
if not isinstance(name, mx.base.string_types):
raise TypeError('name must be string')
if not isinstance(arr, mx.ndarray.NDArray):
raise TypeError('arr must be NDArray')
if name.endswith('upsampling'):
self._init_bilinear(name, arr)
elif name.endswith('bias'):
self._init_bias(name, arr)
elif name.endswith('gamma'):
self._init_gamma(name, arr)
elif name.endswith('beta'):
self._init_beta(name, arr)
elif name.endswith('weight'):
self._init_weight(name, arr)
elif name.endswith("moving_mean"):
self._init_zero(name, arr)
elif name.endswith("moving_var"):
self._init_zero(name, arr)
elif name.endswith("moving_inv_var"):
self._init_zero(name, arr)
elif name.endswith("moving_avg"):
self._init_zero(name, arr)
else:
self._init_default(name, arr)
class Scheduler(mx.lr_scheduler.MultiFactorScheduler):
def __init__(self, epoch_step, factor, epoch_size):
super(Scheduler, self).__init__(
step=[epoch_size * s for s in epoch_step],
factor=factor
)
@mx.optimizer.Optimizer.register
class Nesterov(mx.optimizer.NAG):
def set_wd_mult(self, args_wd_mult):
self.wd_mult = {}
for n in self.idx2name.values():
if not (
n.endswith('_weight')
or n.endswith('_bias')
or n.endswith('_gamma')
or n.endswith('_beta')
or n.endswith('weightfuse')
):
self.wd_mult[n] = 0.0
if self.sym is not None:
attr = self.sym.attr_dict()
for k, v in attr.items():
if k.endswith('_wd_mult'):
self.wd_mult[k[:-len('_wd_mult')]] = float(v)
self.wd_mult.update(args_wd_mult)
class InfoCallback(mx.callback.Speedometer):
"""Calculate training speed in frequent
Parameters
----------
batch_size: int
batch_size of data
frequent: int
calculation frequent
"""
def __init__(self, batch_size, frequent=50):
mx.callback.Speedometer.__init__(self, batch_size, frequent)
self.total_top1=0.0
self.total_top5=0.0
self.total_loss=0.0
def __call__(self, param):
"""Callback to Show speed."""
count = param.nbatch
if self.last_count > count:
self.init = False
self.last_count = count
if self.init:
if count % self.frequent == 0:
speed = self.frequent * self.batch_size / (time.time() - self.tic)
if param.eval_metric is not None:
name_value = param.eval_metric.get_name_value()
param.eval_metric.reset()
log_info='Epoch[%d] Batch [%d]\tSpeed: %.0f'%(param.epoch, count, speed)
for name, value in name_value:
value=value if not np.isinf(value) else 10.0 #log(0)=inf
if name=='cross-entropy':
self.total_loss+=1.0*value*self.frequent
log_info=log_info+'\tloss: %.4f(%.4f)'%(value,self.total_loss/count)
elif name=='accuracy':
self.total_top1+=1.0*value*self.frequent
log_info=log_info+'\ttop1: %.4f(%.4f)'%(100.0*value,100.0*self.total_top1/count)
elif 'top_k' in name:
self.total_top5+=1.0*value*self.frequent
log_info=log_info+'\ttop5: %.4f(%.4f)'%(100.0*value,100.0*self.total_top5/count)
logging.info(log_info)
else:
logging.info("Iter[%d] Batch [%d]\tSpeed: %.2f samples/sec",
param.epoch, count, speed)
self.tic = time.time()
else:
self.init = True
self.tic = time.time()
self.total_top1=0.0
self.total_top5=0.0
self.total_loss=0.0
def fit(args, network, data_loader, batch_end_callback=None):
# kvstore
kv = mx.kvstore.create(args.kv_store)
# logging
head = '%(asctime)-15s Node[' + str(kv.rank) + '] %(message)s'
if 'log_file' in args and args.log_file is not None:
log_file = args.network+'.txt'
log_dir = args.log_dir
log_file_full_name = os.path.join(log_dir, log_file)
log_dir=os.path.dirname(log_file_full_name)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
# import shutil
# shutil.copy('train_imagenet.py', os.path.join(log_dir, 'training.py'))
logger = logging.getLogger()
handler = logging.FileHandler(log_file_full_name)
formatter = logging.Formatter(head)
handler.setFormatter(formatter)
logger.addHandler(handler)
handler = logging.StreamHandler()
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.DEBUG)
logger.info('start with arguments %s', args)
else:
logging.basicConfig(level=logging.DEBUG, format=head)
logging.info('start with arguments %s', args)
# load model
model_prefix = args.model_prefix
assert model_prefix is not None
model_prefix +=args.network
print model_prefix
model_args = {}
start_epoch_step=args.lr_epoch_step
if args.load_epoch is not None:
assert model_prefix is not None
tmp = mx.model.FeedForward.load(model_prefix, args.load_epoch)
model_args = {'arg_params': tmp.arg_params,
'aux_params': tmp.aux_params,
'begin_epoch': args.load_epoch}
stage=int(args.load_epoch/args.lr_epoch_step)
args.lr*=args.lr_factor**stage
start_epoch_step=(1+stage)*args.lr_epoch_step-args.load_epoch
if args.load_model is not None:
save_dict = mx.nd.load('%s.params' % (args.model_prefix+args.load_model))
tmp_arg_params = {}
tmp_aux_params = {}
for k, v in save_dict.items():
tp, name = k.split(':', 1)
if tp == 'arg':
tmp_arg_params[name] = v
if tp == 'aux':
tmp_aux_params[name] = v
model_args = {'arg_params': tmp_arg_params,
'aux_params': tmp_aux_params}
# save model
checkpoint = mx.callback.do_checkpoint(model_prefix,5)
# data
(train, val) = data_loader(args, kv)
# train
devs = mx.cpu() if args.gpus is None else [
mx.gpu(i) for i in range(len(args.gpus.split(',')))]
epoch_size = args.num_examples / args.batch_size
if args.kv_store == 'dist_sync':
epoch_size /= kv.num_workers
model_args['epoch_size'] = epoch_size
if 'clip_gradient' in args and args.clip_gradient is not None:
model_args['clip_gradient'] = args.clip_gradient
# disable kvstore for single device
if 'local' in kv.type and (
args.gpus is None or len(args.gpus.split(',')) is 1):
kv = None
epoch_step=range(start_epoch_step,args.num_epochs,args.lr_epoch_step)
model_args['lr_scheduler'] = Scheduler(epoch_step=epoch_step,
factor=args.lr_factor, epoch_size=epoch_size)
logger.info('training parameters: lr=%f, epoch_size=%d, epoch_step=%s',args.lr,epoch_size,epoch_step)
model = mx.model.FeedForward(
ctx=devs,
symbol=network,
num_epoch=args.num_epochs,
learning_rate=args.lr,
momentum=0.9,
wd=0.0001,
optimizer='Nesterov',
# Note we initialize BatchNorm beta and gamma as that in
# https://github.com/facebook/fb.resnet.torch/
# i.e. constant 0 and 1, rather than
# https://github.com/gcr/torch-residual-networks/blob/master/residual-layers.lua
# FC layer is initialized as that in torch default
# https://github.com/torch/nn/blob/master/Linear.lua
initializer=mx.init.Mixed(
['.*fc.*', '.*'],
[mx.init.Xavier(rnd_type='uniform', factor_type='in', magnitude=1),
Init(rnd_type='gaussian', factor_type='in', magnitude=2)]
),
#lr_scheduler=Scheduler(epoch_step=[30, 60, 90, 120, 150, 180], factor=0.1, epoch_size=epoch_size),
**model_args)
eval_metrics = ['ce','accuracy']
## TopKAccuracy only allows top_k > 1
for top_k in [5]:
eval_metrics.append(mx.metric.create('top_k_accuracy', top_k = top_k))
if batch_end_callback is not None:
if not isinstance(batch_end_callback, list):
batch_end_callback = [batch_end_callback]
else:
batch_end_callback = []
batch_end_callback.append(InfoCallback(args.batch_size, 10))
model.fit(
X=train,
eval_data=val,
eval_metric=eval_metrics,
kvstore=kv,
batch_end_callback=batch_end_callback,
epoch_end_callback=checkpoint
)
# train
fit(args, net, get_iterator)