-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcls_function.py
47 lines (31 loc) · 1.03 KB
/
cls_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Modified based on the HRNet repo.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import logging
import numpy as np
import sys
import torch
sys.path.append("../")
# from utils import save_checkpoint, AverageMeter
import random
from tqdm import tqdm
from config import config
from config import update_config
logger = logging.getLogger(__name__)
def train(config, input, model,lr_scheduler):
data_time = AverageMeter()
model.train()
end = time.time()
data_time.update(time.time() - end)
f_thres =18
b_thres = 20
factor = 0
compute_jac_loss = (torch.rand([]).item() < config.LOSS.JAC_LOSS_FREQ) and (factor > 0)
output, jac_loss, _ = model(input, train_step=(lr_scheduler._step_count - 1),
compute_jac_loss=compute_jac_loss,
f_thres=f_thres, b_thres=b_thres)
# target = target.cuda(non_blocking=True)
# compute gradient and do update step
print(" ")