-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest1.py
217 lines (181 loc) · 7.43 KB
/
test1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import torch
import time
from torchvision import transforms
from torch.utils.data import DataLoader
import numpy as np
import argparse
from PIL import Image
from network.network import ADMM_RED_UNFOLD
from tools.image_utils import rgb2ycbcr, calc_psnr, calc_ssim
from config import config
from argparse import ArgumentParser
from config import update_config
from new_Module import MDEQClsNet
from torchinfo import summary
import tensorwatch as tw
from torchviz import make_dot
from torchvision.models import AlexNet
def image_padding(img):
block_size = 32
hei, wid = img.shape
hei_blk = hei // 32
wid_blk = wid // 32
pad_img = img[:hei_blk * 32, :wid_blk * 32]
return pad_img, hei_blk * 32, wid_blk * 32
def image_depadding(img, hei_ori, wid_ori):
img = img[:, :, :hei_ori, :wid_ori]
return img
def process_img(img, only_y=True):
n_dim = img.ndim
if n_dim < 3:
return img
else:
if (img[:, :, 0] == img[:, :, 1]).all() and (img[:, :, 0] == img[:, :, 2]).all() and (
img[:, :, 1] == img[:, :, 2]).all():
return img[:, :, 0]
else:
img_y = rgb2ycbcr(img, only_y=True)
return img_y
def get_cls_net(config, **kwargs):
global BN_MOMENTUM
BN_MOMENTUM = 0.1
model = MDEQClsNet(config, **kwargs)
# 打印model
# print(model)
return model
def parse_args(parser):
# parser = argparse.ArgumentParser(description='Train classification network')
parser.add_argument('--cfg',
help='experiment configure file name',
type=str,
default='experiments/cifar/cls_mdeq_TINY.yaml')
parser.add_argument('--modelDir',
help='model directory',
type=str,
default='')
parser.add_argument('--logDir',
help='log directory',
type=str,
default='')
parser.add_argument('--dataDir',
help='data directory',
type=str,
default='')
parser.add_argument('--testModel',
help='testModel',
type=str,
default='')
parser.add_argument('--percent',
help='percentage of training data to use',
type=float,
default=1.0)
parser.add_argument('opts',
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER)
parser.add_argument('--start_epoch', type=int, default=0, help='epoch number of start training')
parser.add_argument('--end_epoch', type=int, default=100, help='epoch number of end training')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='learning rate')
parser.add_argument('--sample_ratio', type=float, default=0.5, help='sample ratio')
args = parser.parse_args()
update_config(config, args)
return args
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
parser = ArgumentParser(description='redprotest')
args = parse_args(parser)
sample_ratio = 0.1
modelpath = './results/{}_8e-05/model/checkpoint-best.pth'.format(
sample_ratio)
logpath = './log'
if not os.path.exists(logpath):
os.makedirs(logpath)
datasetpath = './test_data/'
picpath = './pic/'.format(sample_ratio)
if not os.path.exists(picpath):
os.makedirs(picpath)
device = 'cuda'
para = torch.load(modelpath)['model']
new_state_dict = {}
for key, value in para.items():
if key.startswith('module.'):
new_key = key[7:] # 去掉 'module.' 前缀
new_state_dict[new_key] = value
else:
new_state_dict[key] = value
para = new_state_dict
fff = eval('get_cls_net')(config)
model = ADMM_RED_UNFOLD(sample_ratio)
# model.load_state_dict(para)
model.to(device)
# input = torch.randn(64, 3, 32, 32).to(device)
# model(input)
print("\n")
# tw.draw_model(model, [1,1,224,224])
# summary(model,(1,1,224,512))
# datasets = ['Set5', 'Set11', 'Set14', 'BSDS100', 'Urban100', 'DIV2K_valid_HR']
datasets = ["BSDS100"]
psnr_list = []
ssim_list = []
time_list = []
for dataset in datasets:
dataset_path = datasetpath + dataset + '/'
if os.path.exists(dataset_path):
rootpath = picpath + str(sample_ratio) + '/'
if not os.path.exists(rootpath):
os.makedirs(rootpath)
rootpath = rootpath + dataset + '/'
if not os.path.exists(rootpath):
os.makedirs(rootpath)
filelist = os.listdir(dataset_path)
with torch.no_grad():
times=[]
for i in range(len(filelist)):
if os.path.splitext(filelist[i])[1] in ['.tif', '.bmp', '.png', '.jpg']:
name = os.path.splitext(filelist[i])[0]
filepath = dataset_path + filelist[i]
img_ori = Image.open(filepath)
img_ori = np.array(img_ori)
img_y = process_img(img_ori, only_y=True)
img_y, hei, wid = image_padding(img_y)
img = img_y / 255.0
img = torch.from_numpy(img)
img = img.type(torch.FloatTensor)
img = img.unsqueeze(0).unsqueeze(0)
img = img.to(device)
start_time = time.time()
#summary(model,img)
prediction = model(img)
# print(a,b,c,d)
# summary(model,input_size=(a,b,c,d))
end_time = time.time()
time_consume = (end_time - start_time)
print(time_consume)
times.append(time_consume)
if name == '1':
continue
prediction = prediction.cpu().data.numpy()
prediction = np.clip(prediction, 0, 1)
prediction *= 255
temp_psnr = calc_psnr(np.array(np.round(prediction[0][0]), dtype='uint8'), img_y)
temp_ssim = calc_ssim(np.array(np.round(prediction[0][0]), dtype='uint8'), img_y)
print(temp_psnr, ' ', temp_ssim)
pic_save_path = rootpath + name + '_{}_{}'.format(temp_psnr, temp_ssim) + '.png'
img = Image.fromarray(np.array(np.round(prediction[0][0]), dtype='uint8'))
img.save(pic_save_path)
psnr_list.append(temp_psnr)
ssim_list.append(temp_ssim)
time_list.append(time_consume)
print("平均时间:",sum(times)/len(times))
with open(os.path.join(logpath, f'{sample_ratio}.txt'), 'a+') as f:
f.write(dataset + '\n')
f.write('psnr:' + str(np.mean(psnr_list).round(2)) + '\n')
f.write('ssim:' + str(np.mean(ssim_list).round(4)) + '\n')
f.write('mean_times:' + str(np.mean(time_list).round(2)) + '\n\n')
# Find total parameters and trainable parameters
total_params = sum(p.numel() for p in model.parameters())
print(f'{total_params:,} total parameters.')
total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'{total_trainable_params:,} training parameters.')
with open(os.path.join(logpath, f'{sample_ratio}.txt'), 'a+') as f:
f.write(str(total_params) + 'total parameters.' + '\n')