-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcifar_train_eval.py
165 lines (130 loc) · 5.92 KB
/
cifar_train_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import time
import argparse
from datetime import datetime
from contextlib import ExitStack
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
import torchvision
from nets.cifar_vgg import vgg16
from nets.cifar_resnet import resnet20, resnet56
from utils.utils import DisablePrint
from utils.summary import SummaryWriter
from utils.preprocessing import cifar_transform
# Training settings
parser = argparse.ArgumentParser(description='classification_baselines')
parser.add_argument('--dist', action='store_true')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--root_dir', type=str, default='./')
parser.add_argument('--data_dir', type=str, default='./data')
parser.add_argument('--log_name', type=str, default='vgg16_baseline')
parser.add_argument('--pretrain', action='store_true', default=False)
parser.add_argument('--pretrain_dir', type=str, default='')
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--wd', type=float, default=5e-4)
parser.add_argument('--train_batch_size', type=int, default=256)
parser.add_argument('--test_batch_size', type=int, default=200)
parser.add_argument('--max_epochs', type=int, default=200)
parser.add_argument('--log_interval', type=int, default=10)
parser.add_argument('--gpus', type=str, default='0')
parser.add_argument('--num_workers', type=int, default=0)
cfg = parser.parse_args()
cfg.log_dir = os.path.join(cfg.root_dir, 'logs', cfg.log_name)
cfg.ckpt_dir = os.path.join(cfg.root_dir, 'ckpt', cfg.log_name)
os.makedirs(cfg.log_dir, exist_ok=True)
os.makedirs(cfg.ckpt_dir, exist_ok=True)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = cfg.gpus
def main():
num_gpus = torch.cuda.device_count()
if cfg.dist:
device = torch.device('cuda:%d' % cfg.local_rank)
torch.cuda.set_device(cfg.local_rank)
dist.init_process_group(backend='nccl', init_method='env://',
world_size=num_gpus, rank=cfg.local_rank)
else:
device = torch.device('cuda')
# Data
print('==> Preparing data ...')
dataset = torchvision.datasets.CIFAR10
trainset = dataset(root=cfg.data_dir, train=True, download=True,
transform=cifar_transform(is_training=True))
train_sampler = torch.utils.data.distributed.DistributedSampler(trainset,
num_replicas=num_gpus,
rank=cfg.local_rank)
train_loader = torch.utils.data.DataLoader(trainset,
batch_size=cfg.train_batch_size // num_gpus
if cfg.dist else cfg.train_batch_size,
shuffle=not cfg.dist,
num_workers=cfg.num_workers,
sampler=train_sampler if cfg.dist else None)
testset = dataset(root=cfg.data_dir, train=False,
transform=cifar_transform(is_training=False))
test_loader = torch.utils.data.DataLoader(testset,
batch_size=cfg.test_batch_size,
shuffle=False,
num_workers=cfg.num_workers)
print('==> Building model ...')
model = vgg16()
model = model.to(device)
if cfg.dist:
model = nn.parallel.DistributedDataParallel(model,
device_ids=[cfg.local_rank, ],
output_device=cfg.local_rank)
else:
model = nn.DataParallel(model).to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=cfg.lr, momentum=0.9, weight_decay=cfg.wd)
lr_schedulr = optim.lr_scheduler.StepLR(optimizer, 60, 0.1)
criterion = torch.nn.CrossEntropyLoss()
summary_writer = SummaryWriter(cfg.log_dir)
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
model.train()
start_time = time.time()
for batch_idx, (inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if cfg.local_rank == 0 and batch_idx % cfg.log_interval == 0:
step = len(train_loader) * epoch + batch_idx
duration = time.time() - start_time
print('%s epoch: %d step: %d cls_loss= %.5f (%d samples/sec)' %
(datetime.now(), epoch, batch_idx, loss.item(),
cfg.train_batch_size * cfg.log_interval / duration))
start_time = time.time()
summary_writer.add_scalar('cls_loss', loss.item(), step)
summary_writer.add_scalar('learning rate', optimizer.param_groups[0]['lr'], step)
def test(epoch):
model.eval()
correct = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
correct += predicted.eq(targets.data).cpu().sum().item()
acc = 100. * correct / len(test_loader.dataset)
if cfg.local_rank == 0:
print('%s Precision@1 ==> %.2f%% \n' % (datetime.now(), acc))
summary_writer.add_scalar('Precision@1', acc, global_step=epoch)
return
for epoch in range(cfg.max_epochs):
train_sampler.set_epoch(epoch)
train(epoch)
test(epoch)
lr_schedulr.step(epoch)
if cfg.local_rank == 0:
torch.save(model.state_dict(), os.path.join(cfg.ckpt_dir, 'checkpoint.t7'))
print('checkpoint saved to %s !' % os.path.join(cfg.ckpt_dir, 'checkpoint.t7'))
summary_writer.close()
if __name__ == '__main__':
with ExitStack() as stack:
if cfg.local_rank != 0:
stack.enter_context(DisablePrint())
main()